Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

cis-Diphenylbis(1,3,5-triaza-7-phosphaadamantane-кP)platinum(II)

Alfred Muller and Andreas Roodt*

Department of Chemistry and Biochemistry, Rand Afrikaans University, Auckland Park, Johannesburg, South Africa 2006
Correspondence e-mail: aroo@rau.ac.za

Received 23 March 2004

Accepted 16 April 2004
Online 22 May 2004
The structure of the title compound, $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{P}\right)_{2}\right]$ or $\left[\mathrm{Pt}(\mathrm{Ph})_{2}(\mathrm{PTA})_{2}\right]$ (where Ph is phenyl and PTA is $1,3,5-$ triaza-7-phosphaadamantane), is discussed. Selected geometric parameters are: $\mathrm{Pt}-\mathrm{P}=2.2888$ (16) and 2.2944 (17) \AA, $\mathrm{Pt}-\mathrm{C}=2.052$ (5) and 2.064 (6) $\AA, \mathrm{C}-\mathrm{Pt}-\mathrm{C}=84.6(2)^{\circ}$ and $\mathrm{P}-\mathrm{Pt}-\mathrm{P}=99.28(6)^{\circ}$. The effective cone angle for the PTA ligands was calculated as 113°.

Comment

The 1,3,5-triaza-7-phosphaadamantane ligand (PTA) has attracted much attention due to its unique characteristic of enabling the preparation of water-soluble complexes without the complication of introducing a charged species into the complex. Numerous PTA complexes exhibiting catalytic activity have been reported (Darensbourg et al., 1997, 1999; Alyea et al., 1993; Joó et al., 1996).

(I)

We report here the structure of the title cis-diphenylbis(PTA)platinum(II) complex, (I), as part of our systematic investigation into the basic coordination modes and solution properties of these complexes. Compound (I) is the first example of a $\mathrm{Pt}^{\mathrm{II}}$ square-planar diphenyl complex with a cis geometry containing non-bridged phosphine ligands (Cambridge Structural Database, Version 5.25; Allen, 2002). Similar diphenylplatinum complexes with a trans conformation are known (Incarvito et al., 1999; Ertl et al., 1982). The formation of the cis complex may be ascribed either to
different synthetic routes or to the small steric demand of the PTA ligand (Daigle et al., 1998; Otto \& Roodt, 2001), which enables the more sterically demanding cis conformation typically found for two strong cis ligands.

The Pt atom of (I) lies on a general position in the asymmetric unit and the coordination polyhedron shows a slightly distorted square-planar arrangement (Table 1). The phenyl rings are almost perpendicular to the coordination plane of the Pt atom [dihedral angle $=85.2(2)^{\circ}$ for the C41-phenyl and 86.1 (2) ${ }^{\circ}$ for the C31-phenyl]. This perpendicular conformation allows more space for the PTA ligands, resulting in quite a small bite angle of $84.6(2)^{\circ}$ for $\mathrm{C} 41-\mathrm{Pt}-\mathrm{C} 31$, compared with 99.28 (6) ${ }^{\circ}$ for $\mathrm{P} 1-\mathrm{Pt}-\mathrm{P} 2$.

The orientation of the PTA ligands is best described by the torsion angles, which were calculated using the methylene substituent on the phosphine closest to the metal coordination plane. Two significantly different values [28.8 (3) ${ }^{\circ}$ for $\mathrm{C} 41-$ $\mathrm{Pt}-\mathrm{P} 1-\mathrm{C} 12$ and $15.5(3)^{\circ}$ for $\left.\mathrm{C} 31-\mathrm{Pt}-\mathrm{P} 2-\mathrm{C} 22\right]$, were obtained, and may possibly be the result of steric and packing effects.

The most widely used method for determining ligand steric behaviour at a metal centre utilizes the Tolman cone angle (Tolman, 1977), using an $M-\mathrm{P}$ bond distance of $2.28 \AA$, a $\mathrm{C}-$ H bond distance of $0.97 \AA$ and $1.2 \AA$ as the van der Waals radius of hydrogen. For the calculation of effective cone angles, the $\mathrm{Pt}-\mathrm{P}$ bond distances determined from the crystallographic data were used (Otto et al., 2000). The value of 113° obtained from effective cone-angle calculations for (I) is in agreement with the previous values, again illustrating the rigidness of PTA (Meij et al., 2002).

High $U_{\text {eq }}(\max) / U_{\text {eq }}(\min)$ values are observed for atoms lying on the periphery of the molecule in both the phenyl and

Figure 1
The structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.
the phosphine parts, indicating some freedom of packing in these regions. This may also explain some observed short CC distances (Albertsson et al., 1980).

Relatively few structures of the form cis-[M(X) $\left.)_{2}(\mathrm{PTA})_{2}\right]$ (where M is Pd or Pt and X is an anionic substituent) are known. These are compared with (I) in Table 2, clearly showing the higher steric demand of Cl^{-}compared with the $\mathrm{C}_{6} \mathrm{H}_{5}{ }^{-}$ligand, with $\mathrm{ca} 5^{\circ}$ differences for both the $\mathrm{P}-M-\mathrm{P}$ and $X-M-X$ angles. Larger effective cone angles $\left(\Theta_{E}\right)$ are noted for the chloro complexes, indicating the weaker trans influence of Cl^{-}compared with PTA. This can also be correlated with the respective $M-X$ and $M-\mathrm{P}$ bond distances.

It is interesting to note that, in a comparison with other substituted aryl ligands (Table 3), the $\mathrm{C}-M-\mathrm{C}$ angles do not differ significantly, even though phosphines with various steric demands were used. The exception is the case of the strongly electron-withdrawing (and bulky) $\mathrm{C}_{6} \mathrm{~F}_{5}{ }^{-}$group, where differences of $c a 5^{\circ}$ for both the $\mathrm{P}-M-\mathrm{P}$ and $X-M-X$ angles were again noted.

Experimental

$\left[\mathrm{Pt}(\mathrm{Ph})_{2}(\operatorname{cod})\right]$ (cod is $\eta^{4}-1,5$-cyclooctadiene) was prepared according to the literature procedure of Clark \& Manzer (1973). To a solution of $\left[\mathrm{Pt}(\mathrm{Ph})_{2}(\mathrm{cod})\right](50 \mathrm{mg}, 0.11 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{ml})$ was added PTA ($34 \mathrm{mg}, 0.22 \mathrm{mmol}$) dissolved in methanol (10 ml). Crystals of (I) suitable for X-ray analysis separated from the solution over a period of a few hours in quantitative yield. Spectroscopic data:
${ }^{31} \mathrm{P}\{\mathrm{H}\}$ NMR $\left(\mathrm{CDCl}_{3}\right):-77.2$ p.p.m. $\left({ }^{1} J_{\mathrm{Pt}-\mathrm{P}}=1560 \mathrm{~Hz}\right)$.

Crystal data

$\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{P}\right)_{2}\right]$	$Z=2$
$M_{r}=663.6$	
Triclinic, $P \overline{1}$	$D_{x}=1.782 \mathrm{Mg} \mathrm{m}^{-3}$
$a=9.616(5) \AA$	Mo Ko radiation
$b=10.395(5) \AA$	Cell parameters from 3164
$c=12.477(5) \AA$	reflections
$\alpha=86.112(5)^{\circ}$	$\theta=2-24^{\circ}$
$\beta=83.778\left(5^{\circ}\right.$	$\mu=5.83 \mathrm{~mm}^{-1}$
$\gamma=88.080(5)^{\circ}$	$T=293(2) \mathrm{K}$
$V=1236.5(10) \AA^{\circ}$	Needle, colourless
	$0.22 \times 0.06 \times 0.04 \mathrm{~mm}$

Data collection

Bruker SMART CCD 1K areadetector diffractometer ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\text {min }}=0.69, T_{\max }=0.77$
12595 measured reflections

> 7326 independent reflections
> 4483 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.048$
> $\theta_{\max }=31.6^{\circ}$
> $h=-14 \rightarrow 14$
> $k=-12 \rightarrow 15$
> $l=-17 \rightarrow 18$

Table 1
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Pt}-\mathrm{C} 31$	$2.052(5)$	$\mathrm{Pt}-\mathrm{P} 1$	$2.2888(16)$
$\mathrm{Pt}-\mathrm{C} 41$	$2.064(6)$	$\mathrm{Pt}-\mathrm{P} 2$	$2.2944(17)$
$\mathrm{C} 31-\mathrm{Pt}-\mathrm{C} 41$	$17.6(2)$	$\mathrm{C} 12-\mathrm{P} 1-\mathrm{C} 11$	$97.1(3)$
$\mathrm{C} 31-\mathrm{Pt}-\mathrm{P} 1$	$86.71(15)$	$\mathrm{C} 12-\mathrm{P} 1-\mathrm{C} 13$	$97.2(3)$
$\mathrm{C} 41-\mathrm{Pt}-\mathrm{P} 1$	$89.40(15)$	$\mathrm{C} 11-\mathrm{P} 1-\mathrm{C} 13$	$97.9(3)$
$\mathrm{C} 31-\mathrm{Pt}-\mathrm{P} 2-\mathrm{C} 23$	$98.4(3)$		
$\mathrm{C} 41-\mathrm{Pt}-\mathrm{P} 2$	$173.77(15)$	$\mathrm{C} 21-\mathrm{P} 2-\mathrm{C} 22$	$97.8(3)$
$\mathrm{P} 1-\mathrm{Pt}-\mathrm{P} 2$	$99.28(6)$	$\mathrm{C} 23-\mathrm{P} 2-\mathrm{C} 22$	$96.7(3)$

Table 2
Comparative geometrical data for cis- $\left[M(X)_{2}(\mathrm{PTA})_{2}\right]$ complexes $\left(\AA^{\circ}{ }^{\circ}\right)$.

$M(X)$	$M-\mathrm{P}$	$M-\mathrm{X}$	$\mathrm{P}-M-\mathrm{P}$	$X-M-X$	Θ_{E}
$\operatorname{Pt}(\mathrm{Ph})^{a}$	$2.2888(16)$	$2.052(5)$	$99.28(6)$	$84.6(2)$	113
${\operatorname{Pt}(\mathrm{Cl})^{b}}^{b}$	$2.2944(17)$	$2.064(6)$			113
	$2.2240(12)$	$2.3490(13)$	$94.26(4)$	$87.24(5)$	116
	$2.2284(12)$	$2.3712(13)$			117
	$2.229(13)$	$2.3473(12)$	$94.68(5)$	$87.06(5)$	116
$\mathrm{Pt}^{(\mathrm{Cl})^{c} \dagger}$	$2.2300(12)$	$2.3663(13)$			116
$\operatorname{Pd}(\mathrm{Cl})^{d}$	2.242	$2.358(5)$	94.3	$86.2(2)$	117
	2.255	2.373	$93.58(5)$	88.95	116
	2.251	2.347			115
	2.239	2.347	$93.25(5)$	89.15	117
$\operatorname{Pd}(\mathrm{Cl})^{c}$	$2.226(5)$	2.378			116
	$2.264(6)$	$2.360(5)$	$94.4(2)$	$90.2(2)$	117

Notes: (a) this work; (b) Otto et al. (1998); (c) Darensbourg et al. (1997); (d) Alyea et al. (1998). \dagger Protonated form of PTA.

Table 3
Comparative geometrical data for cis- $\left[\operatorname{Pt}(X)_{2}\left(P R_{3}\right)_{2}\right]$ complexes $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.
2-TolPh $=o$-tolylphenyl; $\mathrm{DP}(2-\mathrm{PE})=$ diphenyl(2-phenylethynyl); $\mathrm{DP}(3,3-$ $\mathrm{DMB})=$ diphenyl(3,3-dimethylbutynyl); $\mathrm{DP}(2 \mathrm{pTet})=$ diphenyl(2-p-tolyl)ethynyl; 2-NPh $=2$-nitrophenyl; $7-\mathrm{MeNap}=7$-methyl-1-naphthyl; $2-\mathrm{OMePh}=$ 2-methoxyphenyl; 3,5-DAMPh $=3,5-$ bis(diethylaminomethyl)phenyl.

$\operatorname{Pt}(X)\left(\mathrm{P} R_{3}\right)$	$M-\mathrm{P}$	$M-X$	$\mathrm{P}-M-\mathrm{P}$	$\mathrm{C}-M-\mathrm{C}$	Θ_{E}
$(\mathrm{Ph})(\mathrm{PTA})^{a}$	$2.2888(16)$	$2.052(5)$	$99.28(6)$	$84.6(2)$	113
$(2-\mathrm{TolPh})\left(\mathrm{PEt}_{3}\right)^{b} \dagger$	$2.2944(17)$	$2.064(6)$			113
	$2.317(2)$	$2.058(10)$	$100.0(1)$	$83.9(3)$	145
$\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)[\mathrm{DP}(2-\mathrm{PEPh})]^{c}$	$2.330(2)$	$2.091(6)$			140
$\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)[\mathrm{DP}(3,3-\mathrm{DMBPh})]^{c}$	2.310	2.294	2.050	92.86	85.83
$\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)[\mathrm{DP}(2 \mathrm{pTet})]^{c}$	2.297	2.059		148	
	2.315	2.068	93.28	85.78	151
$(2-\mathrm{NPh})\left(\mathrm{PPh}_{3}\right)^{d}$	2.285	2.109			151
	2.332	2.061	100.37	82.88	\ddagger
$(7-\mathrm{MeNap})\left(\mathrm{PPh}_{3}\right)^{e}$	2.313	2.061			
	$2.34(1)$	$2.08(2)$	$99.8(2)$	$85.2(7)$	\ddagger
$(2-\mathrm{OMePh})\left(\mathrm{PPh}_{3}\right)^{e}$	$2.32(1)$	$2.08(2)$			
	2.309	2.033	100.87	81.56	\ddagger
$(3,5-\mathrm{DAMPh})\left(\mathrm{PEt}_{3}\right)^{f}$	2.313	2.033			
	2.305	2.071	100.17	82.55	150
	2.317	2.058			144

Notes: (a) this work; (b) Rieger et al. (1993); (c) Ara et al. (2002); (d) Brune et al. (1984); (e) Debaerdemaeker et al. (1987); (f) James et al. (1996). † Anti isomer. $\ddagger \mathrm{H}$ atoms not included in the structure extracted from the CSD (Allen, 2002).

Refinement

Refinement on $F^{2} \quad \mathrm{H}$-atom parameters constrained
$R(F)=0.045$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0291 P)^{2}\right]$
$w R\left(F^{2}\right)=0.083$
$S=0.88$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
7326 reflections
298 parameters
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.99 \mathrm{e}^{\text {max }} \AA^{-3}$
$\Delta \rho_{\min }=-0.72 \mathrm{e}^{-3}$

The aromatic and methylene H atoms were placed in geometrically idealized positions $(\mathrm{C}-\mathrm{H}=0.97-0.98 \AA)$ and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus and XPREP (Bruker, 1999); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg \& Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Financial assistance from Sasol, the Research Funds of RAU and the Swedish International Development Cooperation Agency are gratefully acknowledged. Lund University (Professor A. Oskarsson) is thanked for the use of its diffractometer. Part of this material is based on work supported by the South African National Research Foundation under grant No. GUN 2053397. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TR1089). Services for accessing these data are described at the back of the journal.

References

Albertsson, J., Oskarsson, Å., Ståhl, K., Svensson, C. \& Ymén, I. (1980). Acta Cryst. B36, 3072-3078.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Alyea, E. C., Ferguson, G. \& Kannan, S. (1998). Chem. Commun. pp. 345-346.
Alyea, E. C., Fisher, K. J., Foo, S. \& Philip, B. (1993). Polyhedron, 12, 489-492.
Ara, I., Fornies, J., Garcia, A., Gomez, J., Lalinde, E. \& Moreno, M. T. (2002). Chem. Eur. J. 16, 3698-3716.
Brandenburg, K. \& Berndt, M. (2001). DIAMOND. Release 2.1e. Crystal Impact, Postfach 1251, D-53002, Bonn, Germany.

Bruker (1998). SADABS and SMART-NT (Version 5.050). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT-Plus (including XPREP). Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
Brune, H.-A., Wiege, M. \& Debaerdemaeker, T. (1984). Z. Naturforsch. Teil B, 39, 359-368.
Clark, H. C. \& Manzer, L. E. (1973). J. Organomet. Chem. 59, 411-428.
Daigle, D. J., Decuir, T., Robertson, J. \& Darensbourg, D. J. (1998). Inorg. Synth. 32, 40-45.
Darensbourg, D. J., Decuir, T., Stafford, N., Robertson, J., Draper, J. \& Reibenspies, J. (1997). Inorg. Chem. 36, 4218-4226.
Darensbourg, D. J., Robertson, J. B., Larkins, D. L. \& Reibenspies, J. H. (1999). Inorg. Chem. 38, 2473-2481.
Debaerdemaeker, T., Berhalter, K., Weisemann, C. \& Brune, H. A. (1987). Acta Cryst. C43, 1253-1255.
Debaerdemaeker, T., Klein, H.-P., Wiege, M. \& Brune, H. A. (1981). Z. Naturforsch. Teil B, 36, 958-966.
Ertl, J., Debaerdemaeker, T. \& Brune, H. A. (1982). Chem. Ber. 115, 38603874.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Incarvito, C. D., Mirkin, C. A. \& Rheingold, A. L. (1999). Private communication.
James, S. L., Veldman, N., Spek, A. L. \& van Koten, G. (1996). J. Chem. Soc. Chem. Commun. pp. 253-256.
Joó, F., Nadasdi, L., Benyei, A. C. \& Darensbourg, D. J. (1996). J. Organomet. Chem. 512, 45-50.
Meij, A. M. M., Otto, S. \& Roodt, A. (2002). Acta Cryst. E58, m644-m646.
Otto, S. \& Roodt, A. (2001). Inorg. Chem. Commun. 4, 49-52.
Otto, S., Roodt, A. \& Purcell, W. (1998). Inorg. Chem. Commun. 1, 415-417.
Otto, S., Roodt, A. \& Smith, J. (2000). Inorg. Chim. Acta, 303, 295-299.
Rieger, A. L., Carpenter, G. B. \& Rieger, P. H. (1993). Organometallics, 12, 842-847.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Tolman, C. A. (1977). Chem. Rev. 77, 313-348.

